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Abstract. In this study, vortical flows over a close-coupled canard-wing-body configura-
tion at high angle of attacks are studied by using an open-source RANS solver, SU%2. A
grid study is first performed for delta wing only and close-coupled canard-wing-body con-
figurations. Vortex structures, vortex breakdown, surface streamlines and surface pressure
distributions are considered in the assessment of the vortical flow fields. The spanwise
surface pressure distributions are favorably compared against the experimental and the
numerical studies available in the literature. The parallel computational performance of
SU? is also assessed.

1 INTRODUCTION

Modern fighter aircraft have high demands and requirements on rapid maneuverability
reaching high angles of attack. Such requirements led to the studies on flows around
delta wings at high angles of attack [1,3]. It is shown that there occur fundamental
phenomena at high angles of attack such as vortex breakdown and flow separation which
are essential reasons of loss of lift and increase of drag. It is also shown that vortex
breakdown and flow separation can be delayed by inducing an additional vortex into the
flow around body. One of the most effective ways of inducing an additional vortex into
flow is a usage of close-coupled wing-canard configuration [4]. Close-coupled canard-wing
configurations have been investigated in the past and canard-wing configurations are now
widely employed on modern fighters (e.g. XFV-12A, SAAB Gripen, or European Fighter
Aircraft).

The vortical flow over a delta wing at high angle of attacks shows a nonlinear behavior
due to the formation of strong leading edge vortices and its break-down over the wing
Characterizing such flows is rather difficult and highly challenging. In the past, various
experimental[5,9] and numerical[10,12] studies are conducted in order to understand the
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Figure 2: Hybrid grid distribution over the surface and around the leading edge of the wing

aerodynamic characteristics of close-coupled wing-canard configurations at high angle of
attacks.

In this study, SU? is employed for the solution of flow fields over a close-coupled canard-
wing configuration. SU? is an open-source unstructured flow solver and turbulent flows are
described by the Reynolds-averaged Navier-Stokes equations (RANS)[11]. SU? is initially
developed at Stanford University, and still being developed by a world-wide community.
The solver currently has Spalart-Allmaras (SA) and k — w SST turbulence models. Veri-
fication studies are first performed on a configuration studied experimentally and numer-
ically. The solid modeling of sharp corners and grid densities needed to resolve vortical
flows are experimented. The parallel performance of SU? is also assessed.

2 PRELIMINARY RESULTS

In this study the configuration given in Hummel’s experiments[9] is considered for
validation purposes. The model dimensions used in the experimental study are exactly
taken and the flow fields are computed at M = 0.117 and Re = 1.4-10°. The sharp leading
edges are slightly rounded. Figure 1. shows the configuration studied. Canard-off and
canard-on configurations are both considered.

Following the verification studies, a steady flow field is obtained over the canard-wing
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Figure 3: Surface pressure distribution at Re = 1.4-10%, o = 20°
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Figure 4: spanwise presure distributions at Re = 1.4-105, o = 20°

body configuration at 20°angle of attack for Re = 1.4-10°. The convective fluxes are
evaluated by JST model, the SA turbulence model and the Jacobi linear solver are em-
ployed. The computational grid (Figure 2) consists 8.5 million tetrahedral and 7.5 million
prismatic cells, a total of 16 million cells. The hybrid grid has a y™ value of about 1. A
typical computation on a 128/2 core/node parallel computing environment takes about
30 wall-clock hours.

Figure 3. shows the upper surface pressure distribution for the canard-on configuration,
where the suctions created by leading edge vortices are clearly observed. In addition,
Figure 4. shows the spanwise pressure distribution on the wing upper surface. As seen,
the present results are in a better agreement with the experimental data than the reference
numerical studies performed in 90s. Yet, the vortex strength is underpredicted in the mid-
chord location. It appears that the volume grid distribution at the mid-chord location is
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still coarse.

In the full paper, the effects of grid resolution, turbulence models and flux methods
will be presented in detail. The solutions for canard-on and canard-off configurations will
be performed and the effectiveness of canard will be assessed quantitatively.
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