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Abstract. A parallel numerical algorithm has been developed to solve the incompressible
magnetohydrodynamics (MHD) equations in a fully coupled form. The numerical meth-
ods based on the side-centered unstructured �nite volume formulation where the vector
variables are de�ned at face/edge mid-points, meanwhile the scalar quantities are de�ned
at element centroid. The resulting algebraic equations are solved in a monolithic man-
ner using a one-level restricted additive Schwarz preconditioner with a block-incomplete
factorization in order to avoid any time step restrictions forced by stability requirements.
The implementation of the iterative solver is based on the Portable Extensible Toolkit
for Scienti�c computation (PETSc) library to improve its parallel performance. The nu-
merical algorithm is initially validated by solving the electrically conducting uid in a
rectangular channel corresponding to Shercli� and Hunt analytic solutions. Then the al-
gorithm is used to solve the electrically conducting uid around a con�ned square prism
in a rectangular channel.

1 INTRODUCTION

Magnetohydrodynamics mainly concerns with the dynamics of magnetic �elds in elec-
trically conducting uids, e.g. in plasmas and liquid metals, and understanding the uid
behavior under the inuence of electromagnetic �elds plays a crucial role in a large number
of applications in science and engineering such as stellar and planetary magnetic �elds,
solar wind-earth magnetospheric interactions, magnetically con�ned plasma for fusion
energy devices, magnetohydrodynamic generators, liquid-metal blankets, electromagnetic
pumps, stirring of liquid metals, hypersonic reentry, magnetohydrodynamic heat shield,
electric propulsion, etc. The present study proposes a novel parallel face-centered unstruc-
tured �nite volume formulation for the solution of the incompressible MHD equations in a
fully coupled form, where the velocity and magnetic �led vector components are de�ned at
the center of edges/faces, meanwhile the pressure term is de�ned at the element centroid.
The resulting system of algebraic equations is solved in a monolithic manner. The main
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advantage of the monolithic approaches is their robustness, but they require the solution
of large systems of coupled non-linear equations with e�ective iterative solvers and appro-
priate preconditioning techniques. In the present paper, the original system of equations
is multiplied with an upper triangular right preconditioner which results in a scaled dis-
crete Laplacian instead of zero blocks in the original system due to the divergence-free
constraints. Then a one-level restricted additive Schwarz preconditioner with a block-
incomplete factorization within each partitioned sub-domains is utilized for the modi�ed
fully coupled system. The implementation of the preconditioned Krylov subspace algo-
rithm, matrix-matrix multiplication and the restricted additive Schwarz preconditioner
are carried out using the Portable Extensible Toolkit for Scienti�c computation (PETSc)
software package developed at the Argonne National Laboratories.

2 MATHEMATICAL AND NUMERICAL FORMULATION

The non-dimensional equations governing the incompressible resistive magnetohydro-
dynamics (MHD) are given as a coupling between the incompressible Navier-Stokes equa-
tion and the incompressible induction equation in the following integral form:
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where u is the uid velocity, B is the magnetic �eld, � is the uid density, �m is the
magnetic permeability and � is the dynamic viscosity of the uid. The total pressure P
is given as P = p + 1

2
S kBk2. The non-dimensional numbers are the Reynolds number

Re, the magnetic Reynolds number Rem and the coupling number S

Re =
�UL

�
; Rem = �m�UL; S =

B2

��mU2

These numbers are also related to the Stuart (magnetic interaction) number N = SRem
and the Hartmann number Ha =

p
SReRem. In order to impose the solenoidal property

of magnetic �eld, the gradient of a Lagrange multiplier q introduced to the magnetic in-
duction equation as proposed in [1]. In the present study, the face-centered �nite volume
method [2] has been extended for the solution of the incompressible magnetohydrodynam-
ics equations. The local velocity vector components (u; v; w) and magnetic �led vector
components (Bx; By; Bz) are de�ned at the mid-point of each hexahedral element face,
meanwhile the pressure and Lagrange multiplier are de�ned at element centroid. Hence,
the discretizations of the momentum equation and the magnetic induction equation are
done over the dual control volume, meanwhile the continuity equation and Gauss' law
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for magnetism are discretized over the element itself. The resulting system of algebraic
equations is solved in a monolithic manner in order to avoid any time step restrictions
forced by stability requirements. Hence, the restricted additive Schwarz preconditioner
combined with the FGMRES(m) Krylov subspace algorithm has been employed to solve
the fully coupled system using the Portable Extensible Toolkit for Scienti�c computation
(PETSc) library [3].

3 NUMERICAL RESULTS

The numerical algorithm is initially validated with the analytical solutions of electri-
cally conducting uid in a rectangular channel corresponding to Shercli� [4] and Hunt
[5] solutions. The computational domain is set to [�5; 25] � [�1; 1] � [�2; 2]. The ex-
ternally applied magnetic �eld is given by B = (0; 1; 0)>. The analytical solution is
imposed at the inlet and the traction free boundary condition is used at the outlet. The
calculation is carried out at Re = 100, Rem = 1 and S = 1 (Ha = 10). The nondimen-
sional numbers are based on the channel half height and the average mass ow rate. The
numerical calculation is provided in Figure 1-a with the velocity pro�les at the z = 0
center plane. The numerical calculation indicates the formation of the Hartmann layer
on the solid walls, which is consistent with the analytical solution. Then a square of
[�0:5; 0:5]� [�0:5; 0:5]� [�0:5; 0:5] prism is inserted into the channel and the electrically
insulating boundary condition with no-slip velocity is imposed on the prism. The modi-
�ed ow structure is presented in Figure 1-b corresponding to the z = 0 mid-plane. As
the Hartmann number increases the separation bubble behind the square prism is signi�-
cantly reduced and the pressure gradient in the channel is increased. The ow converges
to the Shercli� solution at the outlet.

[a]

[b]

Figure 1: The contours of x�velocity at z = 0 plane for rectangular channel with insulating walls [a]
and channel with unit cube inside [b].

3



K. Ata And M. Sahin

[a]

[b]

Figure 2: The contours of x�velocity at z = 0 plane for rectangular channel with conducting Hartmann
walls [a] and channel with unit cube inside [b].

The second set of numerical solutions correspond to the perfectly electrically conducting
channel walls corresponding to Hunt [5] solution. The computed solution with the same
nondimensional numbers is provided in Figure 2-a. The velocity pro�les indicates that the
velocity increases next to the perfectly insulating side walls creating "M" type velocity
pro�le in spanwise direction with a relatively low velocity at z = 0 mid-plane. Then the
cubic prism with the electrically insulating walls is inserted into the channel in order to
demonstrate the e�ect of the perfectly electrically conducting channel walls. The similar
ow features are observed for the electrically conducting uid around a con�ned square
prism as seen in Figure 2-b. However, the separation bubble is diminished at mid-plane
due to increased pressure gradient.
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