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Abstract. We present a scalable parallelization of a front-tracking method and its ap-
plication to study effects of soluble surfactant on the lateral migration of deformable
bubbles in a pressure-driven channel flow. The front-tracking method uses an Eulerian
grid to solve the flow equations and a Lagrangian grid to track the interface, so it poses
a challenging task to develop a scalable parallelization algorithm due to different types
of communication within and between the Eulerian and Lagrangian grids. In this study,
we develop a parallel algorithm and propose two different strategies for handling com-
munication between the Lagrangian and Eulerian grids. Strong and weak scaling studies
are performed and good scalability is demonstrated on two supercomputers. Then exten-
sive simulations are performed to examine the effects of soluble surfactant on the lateral
migration of deformable bubbles in a pressure-driven channel flow.

1 Introduction

Multiphase flows are ubiquitous in natural processes and industrial applications. It is
therefore crucially important to develop computational tools for accurate simulations of
multiphase flows in realistic flow conditions. The main difficulty arises from the existence
of interface separating different phases that evolves continuously with the flow and may
undergo large deformations often leading to topological changes such as breakup and
coalescence. Tracking of fluid interfaces has proved to be a notoriously difficult task.
In the front-tracking method [8], the interface is explicitly tracked using a Lagrangian
grid consisting of marker points moving with the local flow velocity interpolated from the
underlying Eulerian grid on which the flow equations are solved. For accurate simulations,
the front-tracking method requires a high spatial and temporal resolution, which in turn
demands high computational power. In addition, multiphase flow simulations must be
performed using millions of bubbles to acquire meaningful statistical information about
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the most of practical bubbly flows. Non-uniform distribution of bubble sizes and the
multi-physics effects such as soluble surfactant, viscoelasticity, thermocapilarity, etc. add
further complexity to the multiphase flow problems. To keep computational time within
practical limits simulations must be done in parallel.

In the present study, an efficient parallel algorithm is developed for the front-tracking
method. Two different communication strategies are proposed for the data exchange
between the Eulerian and Lagrangian grids. Various latency-hiding optimizations are
implemented to reduce the communication overhead. Both strong and weak scalabilities
are examined on two different hardware systems and the method is demonstrated to be
highly scalable. Finally, method is used to study the effects of soluble surfactant on
lateral migration of deformable bubbles in pressure-driven channel flow. It is found that
the surfactant collected at the interface create the Marangoni stresses that counteract the
viscous shear stress and even a small amount of surfactant can alter the direction of the
lateral migration of the bubbles and thus the overall behavior of the bubbly flow.

2 Governing Equations and Numerical Method

The front-tracking is based on one-field formulation of the flow equations. In this
framework, the incompressible flow equations are written as

V-u = 0, (1)
Jdpu T
T +V-(puu) = —Vp+ V- pu(Vu+Vu')+ /Aa(l“)nnd(x —xys)dA, (2)
where u, p, p and p are velocity vector, pressure, density and viscosity fields, respectively.
The surface tension is treated as a body force in the last term on the right hand side of
Eq. (2), where o is the surface tension coefficient determined as a function of the interfacial
surfactant concentration I'; k is twice the mean curvature, and n is a unit vector normal
to the interface. The three-dimensional delta function ¢ indicates that the surface tension
acts only on the interface and its arguments x and x¢ denote the point at which the
equation is evaluated and a point at the interface, respectively.

In the front-tracking method, the interface is tracked explicitly using a Lagrangian grid
while the flow equations are solved on a staggered Eulerian grid as shown in Fig. 1. The
Lagrangian grid consists of Lagrangian marker points connected by triangular elements as
shown in Fig. 1b. The marker points move with the local flow velocity interpolated from
the Eulerian grid. The surface tension is computed on the Lagrangian grid and is then
distributed onto the Eulerian grid to be added to the momentum equations as a body
force. The indicator function is defined such that it is unity inside the bubble and zero
outside, and is used to set the material properties in different phase. The indictor function
is computed based on the location of the marker points using the standard procedure
as described by Unverdi and Tryggvason [8]. As the interface evolves, it is needed to
restructure the Lagrangian grid by deleting the elements that are smaller than a pre-
specified lower limit and by splitting the elements that are larger than a pre-specified upper
limit in the same way as described by Tryggvason et al. [7]. In the case of contamination,
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Figure 1: Lagrangian and Eulerian grids (a) in 2D and (b) in 3D. Flow equations are solved on Eulerian
grid while interface is represented by a Lagrangian grid consisting of connected marker points [2].

the interfacial surfactant evolution equation is also solved on the Lagrangian grid as
described by Muradoglu and Tryggvason [5].

The mass and momentum conservation equations are solved on a staggered Eulerian
grid using a projection method [1]. To account for the effects of the soluble surfactant,
the bulk and interfacial surfactant concentration evolution equations are solved fully cou-
pled with the flow equations as described by Muradoglu and Tryggvason [5]. Standard
second order central finite-difference approximations are used to discretize all the spatial
derivatives except for the convective terms for which a third order QUICK scheme is used.
The bulk surfactant concentration evolution equation is also discretized and solved on the
Eulerian grid. For this purpose, the spatial derivatives are discretized using second order
finite-differences except for the convective terms for which a fifth order WENO-Z scheme
is employed [5]. Time integration is performed using a second order predictor-corrector
scheme. Detailed description of the numerical method can be found in Tryggvason et
al. [8] and Muradoglu and Tryggvason [5].

3 Parallelization of the front-tracking method

In parallelization, a data dependency graph is first constructed for the full front-
tracking method and then a parallel algorithm is developed focusing on the paralleliza-
tion of the Lagrangian grid since the Eulerian grid is simply parallelized using a classical
domain-decomposition method.

The processes computing the Eulerian and Lagrangian grids are called Domain and
Front, respectively. A simple domain decomposition method is easily applied for the
parallelization of the Eulerian grid. Similar to the Eulerian grid, the Lagrangian grids
are divided into subgrids, and distribute bubbles among the parallel Fronts. The Front
processor becomes owner of a bubble when the center of the bubble is in the subdomain
of the Front. Each Front is mapped to a number of Domain processes and the Front
communicates only with these Domains. An example mapping of 8 Domains to 2 Fronts
is shown in Fig. 2a. As flow evolves, a bubble moves in the physical domain and its center
may lie at the border shared by more than one Front (Fig. 2b). Obviously shared bubbles
complicate parallelization. To deal with this problem, we take the following two simpler
approaches: (i) Owner-computes in which the shared bubble is computed by the owner
Front. The owner processor solves the equations, keeps track of the sharers, and sends or
receives data while the sharers only route the shared data to the corresponding Domains.
(i) Redundantly-All-Compute in which Fronts containing the shared portion of the bubble
redundantly perform computations for the entire shared bubble.
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Figure 2: (Left) Work division for parallel Fronts where upper 4 Domains are assigned to upper Front
and lower 4 Domains are assigned to lower Front. (Right) Two parallel Fronts with a shared bubble [2].
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Figure 3: Top row: Strong scaling speedup (higher is better). Bottom row: Weak scaling (lower is
better). (Left panel) Abel. (Right panel) Hazel Hen. [2].

4 Results and discussion

An extensive study are carried out to assess the performance of the parallelization al-
gorithm on two supercomputers: The Abel cluster located at the University of Oslo and
the Hazel Hen located at the High Performance Computing Centre in Stuttgart. Specifi-
cations of both clusters can be found in Farooqi et al. [2]. Simulations are performed for a
laminar mono-dispersed bubbly flow in a vertical channel and flow parameters are mainly
based on the deformable bubble case studied by Lu and Tryggvason [4]. A reasonable grid
resolution is used in which the bubbles are resolved by about 28 x 28 x 28 grid points.
Simulations are performed in a cubic periodic box as in Lu and Tryggvason [4].

We first examine the strong scaling and the results are shown in top row of Fig. 3.
As seen, for a grid resolution of 2563, the best speedup for both strategies is achieved on
Abel when 64 Domain+64 Front processes are used. Compared to the baseline case of
1+ 1 processes, the speedup is 16x for redundantly-all-compute and 14x for the owner-
computes strategy. This figure also shows that the scalability is much better on Hazel Hen
mainly due to its higher network bandwidth, i.e., 11.7 GB/s, about twice that of Abel.
We next examine the weak scaling of the parallel algorithm. For this purpose, we increase
the domain size and number of bubbles while fixing the amount of computational work
assigned to each process. The results are shown in bottom row of Fig. 3.

After testing the parallel algorithm, we finally performed extensive simulations to study
the effects of soluble surfactant on the lateral migration of the bubble in a pressure-
driven channel flow. The computational setup is sketched in the left panel of Fig.4. The
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Figure 4: Computational setup for the lateral migration of da eformable bubble in a pressure-driven
channel flow (left). Effects of bulk surfactant concentration (middle) and the elasticity number (right).

bubble is initially located near the wall in a pressure-driven fully developed laminar flow.
No slip boundary conditions are applied on the walls in the y direction while periodic
boundary conditions are applied in all other directions. The bubble is initially clean
and the surfactant concentration is uniform in the ambient fluid. Here sample results are
presented only for a single bubble. The results for the cases involving many bubbles will be
included in the final version of the paper. In many bubble case, topology changes such as
bubble coalescence and breakup play an important role in the overall dynamics of bubbly
flows and will also be included in the final version of the paper. Figure 4 shows the effects
of the bulk surfactant concentration (middle panel) and the elasticity numbers (right
panel), respectively. As seen, the bubble moves toward the wall when the bubble is clean
due to Magnus effect. In the case of contamination, Marangoni stresses develop at the
bubble interface and push the bubble toward the channel centerline. When the Marangoni
stresses overcome the aerodynamic lift force, the direction of the lateral migration of the
bubble changes completely. These results show that even a small amount of surfactant
may be sufficient to alter the direction of the lateral migration of the bubble, which might
be of crucial importance in engineering applications including the heat exchangers where
it is important to keep the surface of the heat exchanger clean of the bubbles to avoid
insulating effects of the bubble layer.
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