
31st International Conference on Parallel Computational Fluid Dynamics
ParCFD’2019

OPTIMIZATION OF A GAS-PARTICLE FLOW SOLVER ON
VECTOR SUPERCOMPUTERS

Yoichi Shimomura‡∗, Midori Kano†, Takashi Soga‡∗, Kenta Yamaguchi‡∗,
Akihiro Musa†∗, Yusuke Mizuno∗∗, Shun Takahashi∗∗, Ryusuke Egawa∗, and

Hiroyuki Takizawa∗

‡ NEC Solution Innovators, † NEC Corporation, Tokyo, 136-8608, Japan
e-mail: {tak-soga@ti, m-kano@ed.cnt, y-shimomura@wx, k-yamaguchi@vt,

a-musa@bq}.jp.nec.com
∗∗ Tokai University, Hiratsuka, 259-1292, Japan e-mail: {7btad010@mail.u-tokai.ac,

takahasi@tokai-u}.jp
∗ Tohoku University, Sendai, 980-8578, Japan

e-mail: {egawa, takizawa}@tohoku.ac.jp

Key words: Code optimization, Gas-particle flow, Vector Supercomputer

Abstract. This paper discusses code optimization of the shot peening process, which is
a gas-particle flow solver, to perform large simulations on vector supercomputers. Since
the simulation code is memory intensive, the simulation code is optimized to reduce
memory loads and evaluate the performance on vector supercomputers: NEC SX-Aurora
TSUBASA and SX-ACE. The optimized code can achieve about twice higher performance
than the original code on the latest vector supercomputer, SX-Aurora TSUBASA.

1 Introduction

The shot peening process impacts a metal surface with a large number of shots (par-
ticles) and generates a compressible residual stress on the surface. Since the physical
phenomena are collisions of very fine and massive particles in a short time, theoretical
and experimental studies have difficulties in clarifying the behavior of particles and the
process of deformation of workpieces in detail. To investigate the physical phenomena,
Mizuno et al. [1] [2] have developed a simulation code that utilizes the three-dimensional
incompressible Navier-Stokes equations with the immersed boundary method (IBM), and
the simulation code was implemented in the vector supercomputers: NEC SX-ACE and
SX-Aurora TSUBASA. Moreover, we have optimized the simulation code so as to im-
prove the memory access efficiency, because the simulation code is memory intensive and
its sustained performance strongly depends on the memory access performance.

2 Numerical Methods

The governing equations of the simulation code are the three-dimensional incompress-
ible Navier-Stokes equations and the equation of continuity [2]. The fractional step
method is applied for time marching. The equally spaced three-dimensional Cartesian grid

1

Yoichi Shimomura et al.

Fluid cell region

Ghost cell region

Object cell

region

Figure 1: Diagram of cells around a
particle in IBM.

is utilized. The convection term is evaluated by the
second-order skew-symmetric scheme, and the diffu-
sion term is discretized using the second-order central-
difference scheme. Moreover, the pressure and diffu-
sion terms are calculated by the second-order finite-
difference method. The Poisson equation of the pressure
is calculated using the Jacobi iterative method. The
simulation code uses the IBM on the basis of the level
set functions to represent particle boundaries. Figure 1
shows cells around a particle, and the cells are classified
into three region categories of fluid cells, ghost cells, and object (particle) cells.

3 Evaluation Systems

Infiniband Network

VH

Figure 2: Block diagram of an SX-Aurora
TSUBASA system.

SX-Aurora TSUBASA is the latest-generation
vector computing system [3], which consists of one
or more card-type vector engines (VEs) and their
hosts, called vector hosts (VHs). The VE is com-
prised of a vector processor, a 16 MB last-level
cache, and six HBM2 memory modules. The VH is
a standard x86 Linux server and executes another
simple operating system for managing VEs. The
VH is connected with up to eight VEs via two PCI
express switches, and Fig. 2 shows the maximum
configuration of one VH. In the figure, one of two Xeon processors serves as a VH, and
eight VEs and two Infiniband Host Channel Adapters are connected to the VH.

SX-ACE is a previous-generation vector computing system, which consists of one pro-
cessor (four cores) with a peak performance of 256 Gflop/s, and a 64 GB memory with a
256 GB/s memory bandwidth [4]. The SX-ACE system is composed of 1024 nodes con-
nected via a custom interconnect network (called IXS) by a 4 GB/s bandwidth. Table 1
lists the hardware configurations of the two systems, SX-ACE and SX-Aurora TSUBASA..

4 Optimization Technique

In the simulation code, the solver of a Poisson equation for pressure calculation is the
most expensive kernel, and we thus preferentially optimize the solver. Specifically, the
memory access pattern of the solver is modified from so-called indirect memory access to
sequentially access. Figure 3 shows a part of the original solver routine, where variable
fcell and array idf correspond to the number of fluid cells and the coordinate values of
the fluid cells in Fig. 1, respectively. Access to array P is mostly done with an indirect
memory access pattern using a list vector, idf. This code can calculate only the fluid
cells unlike the optimized code mentioned later. However, it cannot achieve high memory
access performance, because it requires a lot of memory access operations and also its
indirect memory access needs a long latency. Figure 4 illustrates our optimized version of

2

Yoichi Shimomura et al.

Table 1: Specifications of CPU and evaluated system on each machine.

SX-ACE SX-Aurora TSUBASA
CPU System CPU System

Clock freq. (GHz) 1 1.4
No. of cores 4 16 8 16
Perf. (Gflop/s) 256 1024 2150 4300
Mem. BW (GB/s) 256 1024 1220 2440

do l = 1, fcell

i = idf(l,1); j = idf(l,2); k = idf(l,3)

pa = -1d0/6d0 * (rhs(i,j,k)*dx*dx - (p(i+1,j,k)+p(i-1,j,k) &

& + p(i,j+1,k)+p(i,j-1,k) + p(i,j,k+1)+p(i,j,k-1)))

p0 = p(i,j,k); p1 = pa*omega + p0*(1d0-omega)

resid = resid + (p1-p0)*(p1-p0)

p_(i,j,k) = p1

end do

Figure 3: Source list of original code.

do k = ks(id), ke(id); do j = js(id), je(id); do i = is(id), ie(id)

if(ib(i,j,k) .gt. 0) then

pa = -1d0/6d0 * (rhs(i,j,k)*dx*dx - (p(i+1,j,k)+p(i-1,j,k) &

& + p(i,j+1,k)+p(i,j-1,k) + p(i,j,k+1)+p(i,j,k-1)))

p0 = p(i,j,k); p1 = pa*omega + p0*(1d0-omega)

resid = resid + (p1-p0)*(p1-p0)

p_(i,j,k) = p1

end if

end do; end do; end do

Figure 4: Source list of optimized code.

the solver. The arrays ks, ke, js, je, is, and ie indicate the sizes of the calculation domain in
the three-dimensional Cartesian grid. The array ib is used to identify the region category,
and a grid point at (i,j,k) represents a fluid cell if ib(i, j, k) > 0. The optimized code
processes every grid point in the calculation domain, irrespective of whether it is a fluid
cell or not. As a result, the optimized code executes more instructions than the original
one. However, this code does not use an indirect memory access, and sequentially accesses
continuous memory regions.

5 Performance Evaluation

We evaluate the performances of the original and optimized codes, which are paral-
lelized with the MPI library and executed using 16 cores on both SX-Aurora TSUBASA
and SX-ACE. The model size is 128× 128× 512 and the number of particles is 100. Fig-
ure 5 shows the effect of optimization on SX-Aurora TSUBASA. V. Load Exec indicates
the stall time of the processor due to data loads from the memory. The V. Load Exec
time of the original code accounts for more than half of the execution time. Thanks to
the optimization, the V. Load Exec time of the optimized code is reduced from 1094.3
to 386.6 seconds, which means 2.8 times higher performance in terms of memory access
efficiency. We apply the continuous memory access instead of the indirect memory access,
and the total memory access latency time decreases. Moreover, the number of the vector
load elements is reduced from 4.17× 1012 to 3.42× 1012.

Figure 6 shows the execution times of the optimized code on SX-ACE and SX-Aurora
TSUBASA. The performance of SX-Aurora TSUBASA is 2.2 times higher than that of
SX-ACE. Since the code is memory intensive, the performance of the code is limited by the
memory bandwidth of each system. Specifically, the aggregated memory bandwidth of the
SX-Aurora TSUBASA system is 2,440 GB/s, and 2.38 times larger than that of SX-ACE,
1,024 GB/s. Therefore, the results indicate that the sustained performance of the code is
mostly determined by the memory bandwidth, and clearly show the importance of memory
bandwidth for achieving high sustained performance on this kind of computational fluid

3

Yoichi Shimomura et al.

1094.3

386.6

609.8

484.5

0

500

1000

1500

2000

Original code Op!mized Code

E
x

e
cu

!
o

n
 !

m
e

 (
se

c.
) V.Load Exec Other

Figure 5: Execution times of original and optimized
codes on SX-Aurora TSUBASA.

1931.8

871.1

0

500

1000

1500

2000

SX-ACE SX-Aurora

E
x

e
cu

!
o

n
 !

m
e

 (
se

c.
)

Figure 6: Execution times of optimized code on SX-
ACE and SX-Aurora TSUBASA.

dynamics simulations.

6 Conclusions

We optimize the simulation code of the shot peening process and evaluate its perfor-
mance on SX-Aurora TSUBASA and SX-ACE. The performance of the optimized code
is about twice higher than that of the original code on SX-Aurora TSUBASA. More-
over, SX-Aurora TSUBASA can achieve 2.2 times higher performance than SX-ACE. We
have executed the large-model size of 1, 024 × 1, 024 × 16, 384 with 100,000 particles on
4,096 cores SX-ACE within 20 days. On the other hand, this work clearly shows that
SX-Aurora TSUBASA is expected to drastically reduce the execution time even if such
a large model is used. Therefore, we will evaluate the performance of the larger-model
size on SX-Aurora TSUBASA when the large system of SX-Aurora TSUBASA, named
A500-64, is released.

Acknowledgment

This work is supported by ”Joint Usage/Research Center for Interdisciplinary Large-
scale Information Infrastructures” in Japan (Project ID: jh180051-NAJ).

REFERENCES

[1] Mizuno, Y., Takahashi, S., Nonomura, T., Nagata, T., Fukuda, K., ”A Simple Im-
mersed Boundary Method for Compressible Flow Simulation around a Stationary and
Moving Sphere,” In: Mathematical Problems in Engineering Volume 2015, Article
ID 438086, 17 pages (2015).

[2] Mizuno, Y., Takahashi, S., Fukuda, K., Obayashi, S., ”Direct Numerical Simulation
of Gas-Particle Flows with Particle-Wall Collisions Using the Immersed Boundary
Method,” In: applied science Volume 8, Issue 12 (2018).

[3] Yamada, Y., Momose, S.,”Vector Engine Processor of NEC’s Brand-New Supercom-
puter SX-Aurora TSUBASA,” In: International symposium on High Performance
Chips (Hot Chips), Cupertino, USA (August 2018).

[4] Momose, S., ”SX-ACE, Brand-New Vector Supercomputer for Higher Sustained Per-
formance I,” In: Resch, M., et al. (eds.) Sustained Simulation Performance 2014, pp.
57-67, Springer-Verlag (2014).

4

