
31st International Conference on Parallel Computational Fluid Dynamics
Parallel CFD2019

PYLBMFLOW: A FULLY PYTHON-ENABLED LARGE-SCALE HIGH-
PERFORMANCE 3D LATTICE BOLTZMANN MULTI-PHASE FLOW

SOLVER

CHUANFU XU, YONGGANG CHE AND ZHENGHUA WANG

National University of Defense Technology (NUDT)
College of Computer

410073 Changsha, P.R. China
e-mail: {xuchuanfu,ygche,zhhwang}@nudt.edu.cn

Key words: Python, Parallel Computing, Lattice Boltzmann Method, 3D Multi-Phase Flow.

Summary. Python is becoming one of the most popular programming languages in areas such
as data science and artificial intelligence. Although Python provides fundamental supports for
scientific and engineering computation since its emergence, in HPC applications, Python is
typically used as a gluing language orchestrating performance-sensitive calculation kernels
written in FORTRAN or C/C++. In this paper, we present a fully Python-enabled large-scale
high-performance 3D Lattice Boltzmann multi-phase flow solver PyLBMFlow, and
demonstrate the difference of implementation and optimization of Python-based parallel
numerical codes with traditional FORTRAN or C/C++ codes. With a range of Python-specific
optimizations, we dramatically improve the efficiency of Python numerical kernels by about
100X for a serial run. Furthermore, we present a 3D decomposition method and implement a
hybrid MPI+OpenMP parallelization using mpi4py and Cython. Tests for 3D multi-phase
problem simulating drop impact with gravity effect using D3Q19 Lattice Boltzmann
discretization and Shan-Chen BGK single relaxation time collision model are presented,
achieving a weak parallel efficiency of above 90% in going from 64 to 1024 compute nodes.

1 INTRODUCTION

As an alternative to classical Computational Fluid Dynamics (CFD) simulations solving
Navier-Stokes equations and turbulent models, Lattice Boltzmann Methods (LBM) regard
fluids as Newtonian fluids from a microscopic perspective, divide flow field into small
lattices (mass points), and simulate fluid evolution dynamics through collision models
(lattices collision and streaming)1. Currently, LBM has been increasingly used for real-world
flow problems with complex geometries and various boundary conditions. Large-scale LBM
simulations with increasing resolution and extending temporal range require massive high
performance computing resources. In areas of computational science and engineering like
CFD, large-scale highly efficient numerical codes on parallel supercomputers usually are
written in FORTRAN or C/C++. Unlike those compiled languages, Python is a dynamically
interpreted object-oriented language. Due to rich third-party libraries and high development
productivity, Python is becoming one of the most popular programming languages in areas
such as data science and artificial intelligence. Python also provides fundamental supports for

First A. Author, Second B. Author and Third C. Coauthor.

 2

computational science and engineering with various libraries and tools such as NumPy and
SciPy since its emergence. Meanwhile Python offers APIs for popular parallel programming
models. For example, mpi4py is a Python library for message passing interface; PyCUDA an
PyOpenCL are the corresponding Python libraries for heterogeneous programming modes
CUDA and OpenCL. Researchers can use libraries like Cython and numba to optimize the
perormance of Python codes, without increasing codes complexity.

Some recent efforts have been delivered to enabe Python-based large-scale high-
performance CFD applications. For example, Mikael Mortensen et al2 implemented direct
numerical simulations with Python using several thousands of CPU cores on the Shaheen
supercomputer. Peter Vincent et al3 present a high-order unstructured CFD solver PyFR based
on the flux reconstruction method. Their Python implementation achievs a sustained
performance of 13.7PFLOP/s on the Titan supercomputer and was selected into the finalist for
the 2016 ACM Gorden Bell prize. The implementation and optimization of Python-based
parallel numerical codes are quite different with traditional FORTRAN or C/C++ codes. In
this paper, we present a fully Python-enabled large-scale high-performance 3D Lattice
Boltzmann multi-phase flow solver PyLBMFlow. We design LBM flow data structures and
computational kernels with Python NumPy multi-dimensional arrays and universal functions.
With a range of Python-specific optimizations and reconstruction of boundary conditions, we
dramatically improve the efficiency of Python numerical kernels by about 100X for a serial
run. Furthermore, we present a 3D decomposition method and implement a hybrid
MPI+OpenMP parallelization using mpi4py and Cython. Tests for 3D multi-phase (liquid and
gases) problem (about 17 Billion lattices) simulating drop impact with gravity effect using
D3Q19 Lattice Boltzmann discretization and Shan-Chen BGK single relaxation time collision
model are presented, achieving a weak parallel efficiency of above 90% in going from 64 to
1024 compute nodes.

2 RESULTS AND DISCUSSIONS

The numerical methods and solution procedure of PyLBMFlow can be found in our
previous papers4. It was originally written in C. Table 1 shows various versions of Python
implementation and optimization. In v0, we use intrinsic Python list to express multi-
dimensional arrays. In v1, we use NumPy.narray to replace Python list and thus the universal
functions (ufunc) operating multi-dimensional arrays are applied in calculation kernels of v2.
In v3, we change the data layout of the particle distribution function fn (a four dimensional
array with 19 components for D3Q19 model) from AoS(Array of Structure) to SoA(Structure
of Array) to enhance the cache efficiency of memory access. In v4, we use Numy.item() and
Numy.itemset() to directly access array elements and avoid the transformation of array
elements to Python objects. v5 uses NumPy.where() instead of Python boolean arrays to
determine boundary conditions. In v6, we redesign the bounceback boundary mechanism. In
v7, we use Cython to rewrite calculation kernels and finally in v8 runtime compilation
optimization is enabled using numba.

Figure.1 shows the comparison of various versions. The speedup is obtained on a single
CPU core of the Tianhe-2 supercomputer5, and v0 is used as baseline. Each version has a

First A. Author, Second B. Author and Third C. Coauthor.

 3

notable performance enhancement compared to its previous version except v1 where we only
replace Python list with NumPy.narray and don’t use Python ufunc to operate arrays. To sum
up, we achieve a speedup of above 77 when comparing the final version v8 to the original
version v0. We implemented the OpenMP shared memory multi-threading based on v5. Fig.2
shows that an OpenMP speedup of above 10 is achieved on 24 cores of a Tianhe-2 compute
node. Fig.3 presents weak scalability test of hybrid MPI+OpenMP parallelization on the
Tianhe-2 supercomputer. We fix the problem size to 256*256*256 for each compute node and
achieve a parallel efficiency of about 90% when scaling from 64 nodes to 1024 nodes.

Versions Description
v0 implementation using intrinsic Python list
v1 replace Python list with NumPy.narray
v2 replace multi-level loops with NumPy ufunc
v3 data structure reconstruction from AoS to SoA
v4 access array elements using NumPy item()
v5 determine boundary conditions using NumPy where()
v6 redesign the bounceback boundary mechanism
v7 rewrite kernels using Cython
v8 runtime compilation using numba

Table 1 : Various Python implementation and optimization of PyLBMFlow

Figure 1: Performance enhancement for various versions Figure 2: OpenMP speedup

Figure 3: Weak scalability on Tianhe-2

1	 0.415	 4.589	
5.407	

10.808	14.552	

38.897	

59.25	

77.528	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

v0	 v1	 v2	 v3	 v4	 v5	 v6	 v7	 v8	

Sp
ee
du

p

Versions

2.477	

1.215	

0.676	
0.428	

0.267	 0.241	

0	

0.5	

1	

1.5	

2	

2.5	

3	

1	 2	 4	 8	 16	 24	

Ex
ec
ut
io
n	
tim

e(
s)

Thread	Number

100%	
98%	

96.50%	

94.20%	

91.40%	

86%	
88%	
90%	
92%	
94%	
96%	
98%	

100%	
102%	

64	 128	 256	 512	 1024	

Pa
ra
lle
l	e
ff
ic
ie
nc
y

Node	Number

First A. Author, Second B. Author and Third C. Coauthor.

 4

REFERENCES
 [1] S. Succi, R. Benzi, F. Higuera, The lattice Boltzmann equation: A new tool for computational uid-dynamics,

Physica D: Nonlinear Phenomena 47 (1) (1991) 219-230.
[2] Mortensen M, Langtangen H P. High performance Python for direct numerical simulations of turbulent

flows[J]. Computer Physics Communications, 2016, 203: 53-65.
[3] Peter Vincent, Freddie Witherdeny, Brian Vermeire, Jin Seok Park and Arvind Iyer. Towards Green Aviation

with Python at Petascale. SC16 finalist.
[4] D. Li, C. Xu, Y. Wang, Z. Song, M. Xiong, X. Gao, X. Deng, Parallelizing and optimizing large-scale 3D

multi-phase ow simulations on the tianhe-2 supercomputer, Concurrency and Computation: Practice and
Experience 28 (2015) 1678-169. Doi:10.1002/cpe.3717.

[5] X. Liao, L. Xiao, C. Yang, MilkyWay-2 supercomputer: system and application, Front. Comput. Sci. 8 (3)
(2014) 345-356. Doi:10.1007/s11704-014-301-3.

