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Summary. Python is becoming one of the most popular programming languages in areas such 
as data science and artificial intelligence. Although Python provides fundamental supports for 
scientific and engineering computation since its emergence, in HPC applications, Python is 
typically used as a gluing language orchestrating performance-sensitive calculation kernels 
written in FORTRAN or C/C++. In this paper, we present a fully Python-enabled large-scale 
high-performance 3D Lattice Boltzmann multi-phase flow solver PyLBMFlow, and 
demonstrate the difference of implementation and optimization of Python-based parallel 
numerical codes with traditional FORTRAN or C/C++ codes. With a range of Python-specific 
optimizations, we dramatically improve the efficiency of Python numerical kernels by about 
100X for a serial run. Furthermore, we present a 3D decomposition method and implement a 
hybrid MPI+OpenMP parallelization using mpi4py and Cython. Tests for 3D multi-phase 
problem simulating drop impact with gravity effect using D3Q19 Lattice Boltzmann 
discretization and Shan-Chen BGK single relaxation time collision model are presented, 
achieving a weak parallel efficiency of above 90% in going from 64 to 1024 compute nodes. 
 
1 INTRODUCTION 

As an alternative to classical Computational Fluid Dynamics (CFD) simulations solving 
Navier-Stokes equations and turbulent models, Lattice Boltzmann Methods (LBM) regard 
fluids as Newtonian fluids from a microscopic perspective, divide flow field into small 
lattices (mass points), and simulate fluid evolution dynamics through collision models 
(lattices collision and streaming)1. Currently, LBM has been increasingly used for real-world 
flow problems with complex geometries and various boundary conditions. Large-scale LBM 
simulations with increasing resolution and extending temporal range require massive high 
performance computing resources. In areas of computational science and engineering like 
CFD, large-scale highly efficient numerical codes on parallel supercomputers usually are 
written in FORTRAN or C/C++. Unlike those compiled languages, Python is a dynamically 
interpreted object-oriented language. Due to rich third-party libraries and high development 
productivity, Python is becoming one of the most popular programming languages in areas 
such as data science and artificial intelligence. Python also provides fundamental supports for 
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computational science and engineering with various libraries and tools such as NumPy and 
SciPy since its emergence. Meanwhile Python offers APIs for popular parallel programming 
models. For example, mpi4py is a Python library for message passing interface; PyCUDA an 
PyOpenCL are the corresponding Python libraries for heterogeneous programming modes 
CUDA and OpenCL. Researchers can use libraries like Cython and numba to optimize the 
perormance of Python codes, without increasing codes complexity.  

Some recent efforts have been delivered to enabe Python-based large-scale high-
performance CFD applications.  For example, Mikael Mortensen et al2 implemented direct 
numerical simulations with Python using several thousands of CPU cores on the Shaheen 
supercomputer. Peter Vincent et al3 present a high-order unstructured CFD solver PyFR based 
on the flux reconstruction method. Their Python implementation achievs a sustained 
performance of 13.7PFLOP/s on the Titan supercomputer and was selected into the finalist for 
the 2016 ACM Gorden Bell prize. The implementation and optimization of Python-based 
parallel numerical codes are quite different with traditional FORTRAN or C/C++ codes. In 
this paper, we present a fully Python-enabled large-scale high-performance 3D Lattice 
Boltzmann multi-phase flow solver PyLBMFlow. We design LBM flow data structures and 
computational kernels with Python NumPy multi-dimensional arrays and universal functions. 
With a range of Python-specific optimizations and reconstruction of boundary conditions, we 
dramatically improve the efficiency of Python numerical kernels by about 100X for a serial 
run. Furthermore, we present a 3D decomposition method and implement a hybrid 
MPI+OpenMP parallelization using mpi4py and Cython. Tests for 3D multi-phase (liquid and 
gases) problem (about 17 Billion lattices) simulating drop impact with gravity effect using 
D3Q19 Lattice Boltzmann discretization and Shan-Chen BGK single relaxation time collision 
model are presented, achieving a weak parallel efficiency of above 90% in going from 64 to 
1024 compute nodes. 

2 RESULTS AND DISCUSSIONS 

The numerical methods and solution procedure of PyLBMFlow can be found in our 
previous papers4. It was originally written in C. Table 1 shows various versions of Python 
implementation and optimization. In v0, we use intrinsic Python list to express multi-
dimensional arrays. In v1, we use NumPy.narray to replace Python list and thus the universal 
functions (ufunc) operating multi-dimensional arrays are applied in calculation kernels of v2. 
In v3, we change the data layout of the particle distribution function fn (a four dimensional 
array with 19 components for D3Q19 model) from AoS(Array of Structure) to SoA(Structure 
of Array) to enhance the cache efficiency of memory access. In v4, we use Numy.item() and 
Numy.itemset() to directly access array elements and avoid the transformation of array 
elements to Python objects. v5 uses NumPy.where() instead of Python boolean arrays to 
determine boundary conditions. In v6, we redesign the bounceback boundary mechanism. In 
v7, we use Cython to rewrite calculation kernels and finally in v8 runtime compilation 
optimization is enabled using numba. 

Figure.1 shows the comparison of various versions. The speedup is obtained on a single 
CPU core of the Tianhe-2 supercomputer5, and v0 is used as baseline. Each version has a 
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notable performance enhancement compared to its previous version except v1 where we only 
replace Python list with NumPy.narray and don’t use Python ufunc to operate arrays. To sum 
up, we achieve a speedup of above 77 when comparing the final version v8 to the original 
version v0. We implemented the OpenMP shared memory multi-threading based on v5. Fig.2 
shows that an OpenMP speedup of above 10 is achieved on 24 cores of a Tianhe-2 compute 
node. Fig.3 presents weak scalability test of hybrid MPI+OpenMP parallelization on the 
Tianhe-2 supercomputer. We fix the problem size to 256*256*256 for each compute node and 
achieve a parallel efficiency of about 90% when scaling from 64 nodes to 1024 nodes. 

Versions Description 
v0 implementation using intrinsic Python list 
v1 replace Python list with NumPy.narray 
v2 replace multi-level loops with NumPy ufunc 
v3 data structure reconstruction from AoS to SoA 
v4 access array elements using NumPy item() 
v5 determine boundary conditions using NumPy where() 
v6 redesign the bounceback boundary mechanism 
v7 rewrite kernels using Cython 
v8 runtime compilation using numba 

Table 1 : Various Python implementation and optimization of PyLBMFlow

           

Figure 1: Performance enhancement for various versions    Figure 2: OpenMP speedup 

 
Figure 3: Weak scalability on Tianhe-2 
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