
31st International Conference on Parallel Computational Fluid Dynamics
ParCFD’2019

A FULLY IMPLICIT ALE FORMULATION INCLUDING
SURFACE TENSION FOR MULTIPHASE FLOWS

Cagatay GUVENTURK∗ and Mehmet SAHIN†

∗ Istanbul Technical University (ITU)
Faculty of Aeronautics and Astronautics

34469 Maslak, Istanbul, TURKEY
e-mail: guventurkc@itu.edu.tr

†Istanbul Technical University (ITU)
Faculty of Aeronautics and Astronautics

34469 Maslak, Istanbul, TURKEY
e-mail: msahin@itu.edu.tr - Web page: http://web.itu.edu.tr/msahin/

Key words: Multiphase, Arbitrary Lagrangian Eulerian (ALE), Exact mass conserva-
tion, Fully implicit (monolithic) algorithm, Unstructured finite volume, Preconditioning

Abstract. A fully implicit (monolithic) arbitrary Lagrangian-Eulerian (ALE) approach
has been developed to solve incompressible multiphase flow problems in three-dimensions.
The numerical algorithm is based on the div-stable face-centered unstructured finite vol-
ume method. The mass of each species is conserved exactly at the machine precision
by giving a special attention to satisfy the discrete geometric conservation law (DGCL)
and the continuity equation. To avoid errors due to the incompressibility condition in
the vicinity of the interface, the pressure field is treated to be discontinuous across the
interface with the discontinuous treatment of density and viscosity. The surface ten-
sion term at the fluid-fluid interface is treated as a force tangent to the interface. The
resulting large system of algebraic equations are solved in a fully coupled manner in or-
der to improve the time step restrictions due to the Courant-Friedrichs-Lewy (CFL) and
capillary waves. The implementation of the preconditioned Krylov subspace algorithm,
matrix-matrix multiplication, restricted additive Schwarz preconditioner, and the access
to HYPRE library are carried out using the PETSc software package developed at the
Argonne National Laboratories.

1 INTRODUCTION

The numerical simulations of multiphase flows poses a major research challenge from
both theoretical and computational points of view. Some difficulties emerge due to the
complex behavior of the multiphase flows, which are mainly discontinuous material prop-
erties across the interface such as density and viscosity, and the evolving interface is a
priori unknown. In addition, the surface tension, which is a force tangent to the interface
[1] that yields a jump across the interface has to be taken into account. Surface tension
alone is not the only source for pressure jump across the interface, but together with the
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viscosity jump with nonzero normal derivative of the normal component of the velocity at
the interface [2]. Therefore, across the interface, these jump conditions have to be satisfied
accurately. Another challenge for the simulation of multiphase flows is to conserve the
mass of the each species, which is important to obtain an accurate solution and especially
critical for the accuracy of the long-term simulations. Furthermore, the propagation of the
capillary waves on the interface between two fluids imposes a restriction on the numerical
time step in addition to the Courant-Friedrichs-Lewy (CFL) restriction. Therefore, the
numerical simulation of multiphase flows is rather demanding in terms of the required
computer power.

2 MATHEMATICAL FORMULATION

The Arbitrary Lagrangian and Eulerian (ALE) approach [4] has been extended to
three-dimensions to solve incompressible multiphase flows in a fully implicit manner. The
incompressible Navier-Stokes equations are discretized using the div-stable face-centered
unstructured finite volume method [5] based on the Arbitrary Lagrangian and Eulerian
formulation. The continuity equation is satisfied within each element and the summation
of the continuity equations can be exactly reduced to the domain boundary, which is
important for the mass conservation. The mass of each species is conserved exactly at
the machine precision by giving a special attention to satisfy the geometric conservation
law (DGCL) at machine precision. To avoid errors due to the incompressibility condition
in the vicinity of the interface, the pressure field is treated to be discontinuous across the
interface with the discontinuous treatment of density and viscosity. The surface tension
term at the interface is treated as a force tangent to the interface and computed using the
straight line integral of tangent vectors at the fluid-fluid interface. The jump conditions
are also exactly satisfied. It is observed that the parasitic currents are found to be very
sensitive to the numerical calculation of normal vectors, and therefore several different
normal vector calculation methods have been investigated in order to reduce the parasitic
currents. The resulting algebraic equations are solved in a fully coupled (monolithic) man-
ner since the mesh deformation algorithm may lead to inadmissible small elements, which
require an extremely small time step due to the Courant-Friedrichs-Lewy (CFL). Fur-
thermore, the propagation of the capillary waves also impose a the time-step restriction.
Two different approaches are used for the preconditioning of the algebraic linear system:
The first one is based the multiplication of the original system with an upper triangular
preconditioner, which results in a scaled discrete Laplacian instead of a zero block in the
original system due to the divergence-free constraint. The second one is based on the block
factorization similar to that of the projection method and the parallel algebraic multigrid
solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE
library [7]. The implementation of the preconditioned Krylov subspace algorithm [6],
matrix-matrix multiplication, the restricted additive Schwarz preconditioner and access
to the HYPRE library [7] are carried out using the PETSc [8] software package developed
at the Argonne National Laboratories in order to improve the parallel performance. The
computational domain is decomposed into a set of partitions using the METIS library [9].
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3 PROBLEM STATEMENT

3.1 The Rising Bubble Problem

In this problem, the simulation of a bubble Ω2 = Ω2(t) ⊂ Ω within a cuboid tank
Ω = [0, 1] × [0, 2] × [0, 1] is performed as it is presented in [10]. The bubble is lighter
than the surrounding fluid Ω1 = Ω \ Ω2(t). Therefore, the bubble will rise and change
its shape due to the buoyancy effects. The material properties are provided by [10] and
presented in Table 1. The deformation and rise of the bubble are illustrated in Figure
1. The physical quantities such as center of mass, rise velocity, mass conservation are
investigated and the results are compared with the results available in the literature.

Figure 1: Deformation and rise of the bubble for the rising bubble problem.

Table 1: Physical parameters and dimensionless numbers for rising bubble problem.

ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1000 1 10 0.1 0.98 1.96 35 125 1000 100
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